Kendra Frederick, Ph.D. Assistant Professor Endowed Title Lupe Murchison Foundation Scholar in Medical Research School Medical School Department Biophysics | Center for Alzheimer's and Neurodegenerative Diseases Graduate Programs Molecular Biophysics Biography The Frederick lab is interested in determining how cellular environments affect protein structures with a particular interest in proteins that are metastable or instrinsically disordered, such as those involved neurodegenerative diseases. Kendra received her B.S. with Honors from the University of Michigan in Biochemistry and French Language and Literature. Working with David Ballou and Bruce Palfey, she determined the kinetics of the chemical and conformational transitions that control the reductive half-reaction of the flavoprotein p-hydroxybenzoate hydroxylase using transient state kinetics and kinetic isotope effects. She then earned a Diplôme d’études Approfondis (M.S.) from the Université de Paris XI in protein structure, function and engineering. She used suicide inhibitors to investigate the mechanism of flavin reduction in hydroxyacid oxidases with Florence Lederer at the Centre National de la Recherche Scientifique (CNRS) in Gif-sur-Yvette. Kendra did her Ph.D. with A. Joshua Wand in the department of Biochemistry and Molecular Biophysics at the University of Pennsylvania. She investigated the contribution that changes in protein entropy make to the overall energetics of ligand binding using solution state NMR relaxation techniques. Most significantly, her work established that the changes in dynamic disorder of the protein side chains were the energetic driver of the entropy term of ligand binding. Kendra was a post-doctoral fellow with Susan Lindquist at the Whitehead Institute. Working in close collaboration with Robert Griffin’s group in MIT Chemistry and the Francis Bitter Magnet Labs, she developed technology to obtain atomic structural level information about proteins in their native contexts and is applying it to protein folding events, such as those involved in macromolecular protein assemblies that drive neurodegenerative disease. This work was supported by a NRSA from the NIH as well as an HHMI fellowship from the Life Science Research Foundation. Since joining the faculty of UT Southwestern in 2015, Dr. Frederick has been implementing an integrated structural biology approch encompassing NMR spectroscopy, protein chemistry and yeast genetics to determine the structures, dynamics and energergetics of protein folding in complex physiological environments such as those involved in the initiation and progression of human disease. Education Undergraduate University of Michigan (2000), Biochemistry Graduate School University of Paris - France (2001), Engineering Graduate School University of Pennsylvania (2006), Biochemistry Research Interest Neurodegenerative diseases Protein folding and structure in cellular environments Sensitivity-enhanced solid-state NMR Publications Featured Publications Combining DNP NMR with segmental and specific labeling to study a yeast prion protein strain that is not parallel in-register. Frederick KK, Michaelis VK, Caporini MA, Andreas LB, Debelouchina GT, Griffin RG, Lindquist S Proc. Natl. Acad. Sci. U.S.A. 2017 Mar Sensitivity-Enhanced NMR Reveals Alterations in Protein Structure by Cellular Milieus. Frederick KK, Michaelis VK, Corzilius B, Ong TC, Jacavone AC, Griffin RG, Lindquist S Cell 2015 Oct Distinct prion strains are defined by amyloid core structure and chaperone binding site dynamics. Frederick KK, Debelouchina GT, Kayatekin C, Dorminy T, Jacavone AC, Griffin RG, Lindquist S Chem. Biol. 2014 Feb 21 2 295-305 Conformational entropy in molecular recognition by proteins. Frederick KK, Marlow MS, Valentine KG, Wand AJ Nature 2007 Jul 448 7151 325-9 Amyloid fibrils embodying distinctive yeast prion phenotypes exhibit diverse morphologies. Ghosh R, Dong J, Wall J, Frederick KK FEMS Yeast Res. 2018 May Aggregation and Fibril Structure of A?M01-42 and A?1-42. Silvers R, Colvin MT, Frederick KK, Jacavone AC, Lindquist S, Linse S, Griffin RG Biochemistry 2017 Aug Orientation of aromatic residues in amyloid cores: structural insights into prion fiber diversity. Reymer A, Frederick KK, Rocha S, Beke-Somfai T, Kitts CC, Lindquist S, Nordén B Proc. Natl. Acad. Sci. U.S.A. 2014 Dec 111 48 17158-63 The role of conformational entropy in molecular recognition by calmodulin. Marlow MS, Dogan J, Frederick KK, Valentine KG, Wand AJ Nat. Chem. Biol. 2010 May 6 5 352-8 Re-evaluation of the model-free analysis of fast internal motion in proteins using NMR relaxation. Frederick KK, Sharp KA, Warischalk N, Wand AJ J Phys Chem B 2008 Sep 112 38 12095-103 Characterization of the backbone and side chain dynamics of the CaM-CaMKIp complex reveals microscopic contributions to protein conformational entropy. Frederick KK, Kranz JK, Wand AJ Biochemistry 2006 Aug 45 32 9841-8 Results 1-10 of 17 1 2 Next Last Honors & Awards NSF CAREER award (2018) Searle Scholar (2017) HHMI Fellow of the Life Science Research Foundation (2009-2012) NIH NRSA (F32) (2008) Winegrad Award for Outstanding Dissertation (2007) Sokol Chemistry Scholarship (1996)